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Abstract
Spectral properties of singular Sturm–Liouville operators of the form A =
sgn(·)(− d2

dx2 + V
)

with the indefinite weight x �→ sgn(x) on R are studied. For
a class of potentials with lim|x|→∞ V (x) = 0 the accumulation of complex and
real eigenvalues of A to zero is investigated and explicit eigenvalue problems
are solved numerically.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction and main results

Let V be a locally integrable real-valued function on R, V ∈ L1
loc(R). Recall that the maximal

operator T associated with the differential expression − d2

dx2 + V in the Hilbert space L2(R) is
given by

(Tf )(x) = −f ′′(x) + (Vf )(x), x ∈ R, (1)

defined on the dense subspace

dom T = {f ∈ L2(R) : f, f ′ absolutely continuous,−f ′′ + Vf ∈ L2(R)}. (2)

We note that due to Weyl’s alternative (see, e.g., [21, 22]) the maximal operator T is not
necessarily selfadjoint in the Hilbert space L2(R), but always contains selfadjoint restrictions.
However, if the differential expression − d2

dx2 + V is in the limit point case at both singular
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endpoints +∞ and −∞, then T is already selfadjoint in L2(R), cf [21, 22]. A sufficient
condition on the potential V for − d2

dx2 + V to be in the limit point case is, e.g.,

lim inf
x→±∞

1

x2
V (x) > −∞, (3)

see [21, 22]. The spectral properties of one-dimensional Schrödinger operators of the form (1),
(2) play a fundamental role in quantum mechanics and have been studied by mathematicians
and physicists for many decades.

Nowadays there is a strong interest in spectral analysis of non-selfadjoint second-order
differential operators which still satisfy certain (Krein space) symmetry properties, e.g., PT -
symmetric operators (see the comprehensive review paper [7] for an overview and further
references and, e.g., [8, 20]). Of particular interest to us is the above differential expression
− d2

dx2 + V multiplied with the indefinite weight function sgn(·), that is, we consider the
differential operator

(Af )(x) := sgn(x)(−f ′′(x) + (Vf )(x)), x ∈ R, (4)

defined on the maximal domain dom A = dom T . Indefinite Sturm–Liouville operators of
similar structure were considered in, e.g., [3, 9, 10, 14, 15]. Obviously, A is not a symmetric
or selfadjoint operator in the space L2(R) equipped with the usual Hilbert scalar product (· , ·).
For the following investigations it is convenient to introduce an indefinite inner product [· , ·]
on L2(R) by

[f, g] :=
∫

R

f (x)g(x) sgn(x) dx, f, g ∈ L2(R). (5)

Then we have [f, g] = (sgn(·)f, g) and (L2(R), [· , ·]) is a so-called Krein space, cf [1]. The
differential operator A is a densely defined closed operator in this Krein space. It is not hard to
see that the operator A is selfadjoint with respect to the Krein space inner product [· , ·] if and
only if the operator T is selfadjoint with respect to the usual L2(R) scalar product (· , ·). Recall
that besides symmetry with respect to the real line the spectrum of a selfadjoint operator in
a Krein space can be quite arbitrary. In particular, the whole complex plane may consist of
eigenvalues or spectral points from the continuous spectrum.

The present paper has the following main objectives. In the case that the indefinite Sturm–
Liouville operator A in (4) is selfadjoint in the Krein space (L2(R), [· , ·]) and the potential
V tends to zero for |x| → ∞, firstly the behavior of complex and real eigenvalues of A in a
neighborhood of zero is studied and secondly numerical methods are applied to analyze some
explicitly solvable problems; among them V (x) = −(1 + |x|)−1.

1.1. Accumulation of eigenvalues for a class of indefinite Sturm–Liouville operators

Our first theorem, which also follows from the considerations in [3] and [15], summarizes the
spectral properties of the indefinite Sturm–Liouville operator A. Recall that for a selfadjoint
operator in a Krein space the essential spectrum σess consists of all spectral points which are
not isolated eigenvalues with finite-dimensional algebraic eigenspaces.

Theorem 1. Suppose that limx→±∞ V (x) = 0 holds. Then the operator A in (4) is selfadjoint
in the Krein space (L2(R), [· , ·]), the essential spectrum of A covers the real line, σess(A) = R,
the nonreal spectrum of A consists of eigenvalues and for every δ > 0 there are at most finitely
many nonreal eigenvalues of A in {z ∈ C : |z| > δ}. In particular, no point of R\{0} is an
accumulation point of nonreal eigenvalues of A.
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In the following we are interested in the behavior of the eigenvalues of A in a neighborhood
of zero. The next theorem, which is the main result of this paper, shows the different
possibilities for eigenvalue accumulation at zero.

Theorem 2. Suppose that limx→±∞ V (x) = 0 holds and that V satisfies the condition

lim sup
x→+∞

x2V (x) < − 1
4 or lim sup

x→−∞
x2V (x) < − 1

4 . (6)

Then at least one of the following statements is true:

(i) The nonreal eigenvalues of A accumulate to zero.
(ii) The growth of λ �→ (A − λ)−1 near zero is not of finite order, i.e., for every open

neighborhood O ⊂ C and all m � 1,M > 1 there exists λ ∈ ρ(A) ∩ O\R such that

‖(A − λ)−1‖|Im λ|m > M(1 + |λ|)2m−2.

(iii) There exists a sequence (µn)n∈N ⊂ (0,∞) of (embedded) eigenvalues of A and associated
eigenvectors (gn)n∈N such that limn→∞ µn = 0 and [gn, gn] � 0 holds.

(iv) There exists a sequence (νn)n∈N ⊂ (−∞, 0) of (embedded) eigenvalues of A and
associated eigenvectors (hn)n∈N such that limn→∞ νn = 0 and [hn, hn] � 0 holds.

The proofs of theorems 1 and 2 make use of spectral and perturbation theory of selfadjoint
operators in Krein spaces. In particular, the theory of locally definitizable operators and a
result on finite rank perturbations in resolvent sense of such operators will be applied, see
section 2 for the details.

1.2. Numerical examples

In this subsection some explicit examples for potentials V are given where nonreal eigenvalues
of the indefinite Sturm–Liouville operator (4) accumulate to zero. We mention that an existence
result on such potentials was already proved in [15]. The models considered here arise from
completely solvable models on the halfaxes, so that eigenvalues and eigenfunctions can be
computed by using standard software packages, e.g. Mathematica (Wolfram Research).

As a first example we consider

V (x) = − 1

1 + |x| , x ∈ R. (7)

Clearly, both assumptions on V from theorem 2 are satisfied. The differential operator

(Tf )(x) = −f ′′(x) − 1

1 + |x|f (x), x ∈ R,

is selfadjoint in the Hilbert space L2(R). Obviously, the operator T is semibounded from below
by −1 and one verifies numerically that −0.429 911 is the lower bound. Since σ(T )∩(−∞, 0)

consists of simple eigenvalues the point −0.429 911 is an eigenvalue. Furthermore, the
negative eigenvalues of T accumulate to zero (see figure 1) and the halfaxis [0,∞) is the
essential spectrum of T.

The indefinite Sturm–Liouville operator

(Af )(x) = sgn(x)

(
−f ′′(x) − 1

1 + |x|f (x)

)
, x ∈ R,

is selfadjoint in the Krein space (L2(R), [· , ·]), its essential spectrum coincides with R and at
least one of the statements (i)–(iv) in theorem 2 is true. Our numerical calculations suggest
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Figure 1. Accumulation of nonreal eigenvalues to zero of the indefinite differential operator A

and negative eigenvalues of T for the potential V (x) = −(1 + |x|)−1.

that the nonreal eigenvalues accumulate to zero (see figure 1). This is done as follows: fix a
solution f+,λ of

−f ′′(x) − 1

1 + |x|f (x) = λf (x), x ∈ R+, (8)

which belongs to L2(R+) and a solution f−,λ of

f ′′(x) +
1

1 + |x|f (x) = λf (x), x ∈ R−, (9)

in L2(R−). The considerations in [6] show that a point λ ∈ C\R is an eigenvalue of A if and
only if the function m, defined by

m(λ) = f ′
+,λ(0)

f+,λ(0)
− f ′

−,λ(0)

f−,λ(0)
, λ ∈ C\R,

has a zero in λ. It is well known that equations (8) and (9) are explicitely solvable. Here
we compute f+,λ and f−,λ explicitly and determine the zeros of m numerically by using the
software package Mathematica (Wolfram Research). A dot in figures 1–3 means that for this
value of λ we find solutions f±,λ ∈ L2(R±) and m(λ) vanishes within the working default
precision of Mathematica.

If λ ∈ C is an eigenvalue of A, then the selfadjointness of A with respect to [· , ·]
implies that the complex conjugate point λ̄ is also an eigenvalue. Moreover, the property
V (x) = V (−x) implies that besides λ also −λ is an eigenvalue of A and the function
x �→ f (−x) is an eigenfunction at −λ whenever x �→ f (x) is an eigenfunction at λ.
Therefore the spectrum of the indefinite differential operator A is symmetric with respect to
the real and imaginary line.

Not surprisingly the potential

V (x) = − 5

1 + |x| , x ∈ R, (10)
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Figure 2. Accumulation of nonreal eigenvalues of the operator A for the potentials V (x) =
−(1 + |x|)−1 and V (x) = −5(1 + |x|)−1.
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Figure 3. Accumulation of nonreal eigenvalues of the operator A for the nonsymmetric potential
V in (11).

generates nonreal eigenvalues of A with the same qualitative behavior as the potential in (7),
cf figure 2. The eigenvalues of A in the upper halfplane for the potential in (10) lie below the
eigenvalues for the potential in (7).

As a third example a ‘combination’ of the above potentials in (7) and (10) is considered
which does not satisfy the symmetry condition V (x) = V (−x), namely

V (x) =
{

−(1 + x)−1, x > 0,

−5(1 − x)−1, x < 0,
(11)
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is considered. Here the nonreal eigenvalues of A also accumulate to zero but are not symmetric
with respect to the imaginary axis, see figure 3.

2. Proofs of theorems 1 and 2

In this section a rigorous proof of theorems 1 and 2 is given with the help of modern Krein
space techniques. We first briefly recall some definitions which are essential in the following.

A point λ from the approximative point spectrum of a selfadjoint operator D in a Krein
space (K, [· , ·]) is said to be of positive type (negative type) with respect to D, if for every
sequence (xn) ⊂ dom D with ‖xn‖ = 1 and ‖(D − λ)xn‖ → 0 as n → ∞ we have

lim inf
n→∞ [xn, xn] > 0 (resp. lim sup

n→∞
[xn, xn] < 0).

We denote the set of all points of positive (negative) type by σ++(D) (resp. σ−−(D)). For a
detailed study and further properties of spectral points of positive and negative types we refer
to [2, 13, 18, 19]. The following definition can be found in a slightly more general form in
[12, 13].

Definition 1. A selfadjoint operator D in a Krein space (K, [· , ·]) is said to be definitizable
over C\{0} if the nonreal spectrum of D consists of isolated points which are poles of the
resolvent of D, no point of R\{0} is an accumulation point of σ(D) ∩ C\R and the following
holds:

(i) Every point µ ∈ R\{0} has an open connected neighborhood Iµ in R such that the spectral
points in each component of Iµ\{µ} belong either to σ++(D) or to σ−−(D).

(ii) For every finite union � of open connected subsets of R,� ⊂ R\{0}, there exist
m � 1,M > 0 and an open neighborhood U of � in C such that

‖(D − λ)−1‖ � M(1 + |λ|)2m−2|Im λ|−m

holds for all λ ∈ U\R.

We note that if the set R\{0} in the above definition is replaced by R, then according to ([13],
theorem 4.7) the selfadjoint operator D is definitizable (over C) in the usual sense (see [16, 17]),
i.e. the resolvent set of D is nonempty and there exists a real polynomial p such that
[p(D)x, x] � 0 holds for all x ∈ dom p(D).

The essence in the proof of theorem 2 is to verify that the conditions limx→±∞ V (x) = 0
and (6) on the potential V imply that a certain fundamentally reducible differential operator
in the Krein space (L2(R), [· , ·]) is definitizable over C\{0} but not definitizable (over C).
Then a recent result on finite rank perturbations of locally definitizable operators implies also
non-definitizability of the indefinite Sturm–Liouville operator A in a neighborhood of zero
and it follows that at least one of the statements (i)–(iv) in theorem 2 holds. A similar type of
argument also implies the assertion in theorem 1, cf [3, 15].

2.1. The differential operators T+ and T−

Let V+ := V � R+ and V− := V � R− be the restrictions of the potential V ∈ L1
loc(R) onto the

positive and negative halfaxes, respectively. Since the differential expression − d2

dx2 + V is in

the limit point case at +∞ and −∞, it follows that the differential expressions − d2

dx2 + V+ and

− d2

dx2 +V− on R+ and R−, respectively, are in the limit point case at the singular endpoints +∞
and −∞, respectively. Furthermore, V ∈ L1

loc(R) implies V+ ∈ L1[0, b) and V− ∈ L1(a, 0]

6
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for any b ∈ R+ and a ∈ R−, and hence 0 is a regular endpoint for both differential expressions
on the halfaxes.

Consider the differential operators

(T+f+)(x) = −f ′′
+ (x) + (V+f+)(x), x ∈ R+,

and

(T−f−)(x) = −f ′′
−(x) + (V−f−)(x), x ∈ R−,

defined on the dense subspaces

dom T+ = {f+ ∈ L2(R+) : f+, f
′
+ a.c.,−f ′′

+ + V+f+ ∈ L2(R+), f+(0) = 0}
and

dom T− = {f− ∈ L2(R−) : f−, f ′
− a.c.,−f ′′

− + V−f− ∈ L2(R−), f−(0) = 0}
in L2(R+) and L2(R−), respectively. Here ‘a.c.’ is used as an abbreviation for ‘absolutely
continuous’. As the functions in dom T+ and dom T− satisfy Dirichlet boundary conditions at
the regular endpoint 0, it follows that T+ and T− are selfadjoint in the Hilbert spaces L2(R+)

and L2(R−), respectively. Since

lim
x→+∞ V+(x) = 0 and lim

x→−∞ V−(x) = 0

hold, the essential spectra of T+ and T− are

σess(T+) = σess(T−) = [0,∞).

Furthermore, by (6) we have

lim sup
x→+∞

x2V+(x) < − 1
4 or lim sup

x→−∞
x2V−(x) < − 1

4

and therefore the negative eigenvalues of T+ or T−, respectively, accumulate to zero (see, e.g.,
([11], XIII.7 corollary 57)) and T+ and T− are semibounded from below, say, e.g., by the
negative constants k+ and k−. Clearly, the operator −T− is also selfadjoint in L2(R−), its
essential spectrum coincides with (−∞, 0],−T− is semibounded from above by −k− and the
positive eigenvalues of −T− accumulate to zero if and only if the negative eigenvalues of T−
accumulate to zero.

2.2. Spectral properties of the operator T+ × −T− in the Krein space (L2(R), [· , ·])
Let us identify the orthogonal sum of the spaces L2(R+) and L2(R−) with L2(R). Then the
diagonal operator matrix

B =
(

T+ 0
0 −T−

)
, dom B = dom T+ ⊕ dom T−, (12)

with respect to the decomposition L2(R) = L2(R+) ⊕ L2(R−) is selfadjoint in the Hilbert
space L2(R). Moreover, the spectrum of B is the union of the spectra of T+ and −T−, that is,
the essential spectrum of B coincides with the whole real line,

σess(B) = R, (13)

and there exists a sequence of positive (embedded) eigenvalues of B accumulating to zero
or a sequence of negative (embedded) eigenvalues of B accumulating to zero. Observe
that B is not a ‘usual’ differential operator in L2(R) since for a function f = f+ ⊕ f− in
dom B = dom T+ ⊕ dom T− the derivative f ′ need not be continuous at zero.

7
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In the following B will be regarded as an operator in the Krein space (L2(R), [· , ·]), where
the indefinite inner product is given by (5). Clearly,

[f+ ⊕ f−, g+ ⊕ g−] =
∫

R+

f+(x)g+(x) dx −
∫

R−
f−(x)g−(x) dx

for f = f+ ⊕ f−, g = g+ ⊕ g− ∈ L2(R) = L2(R+) ⊕ L2(R−) and if (· , ·)+ and (· , ·)−
denote the Hilbert scalar products in L2(R+) and L2(R−), respectively, then [f, g] =
(f+, g+)+−(f−, g−)− holds. Now the selfadjointness of T+ and −T− implies the selfadjointness
of B in the Krein space (L2(R), [· , ·]).

Let λ ∈ (0,∞). Then λ is a spectral point of T+ (and hence B) and there exists a sequence
(fn,+) ⊂ dom T+ such that ‖fn,+‖ = 1 and ‖(T+ − λ)fn,+‖ → 0 for n → ∞. Obviously,
here lim infn→∞[fn,+ ⊕ 0, fn,+ ⊕ 0] > 0 is true. If the point λ ∈ (0,∞) does not belong to
the spectrum of −T− at the same time, then every sequence (fn,+ ⊕ fn,−) ⊂ dom B with the
properties ‖fn,+ ⊕ fn,−‖ = 1 and

lim
n→∞ ‖(B − λ)(fn,+ ⊕ fn,−)‖ = 0

satisfies

lim inf
n→∞ [fn,+ ⊕ fn,−, fn,+ ⊕ fn,−] > 0.

Therefore, such a point λ in the spectrum of B is a spectral point of positive type of
B, λ ∈ σ++(B). Hence the set (0,∞)\σ(−T−) consists of spectral points of positive type
of B. Furthermore, each λ ∈ (0,∞) ∩ σ(−T−) is an eigenvalue of −T− (and an embedded
eigenvalue of B) and every corresponding eigenfunction f− ∈ dom T− satisfies

[0 ⊕ f−, 0 ⊕ f−] = −(f−, f−)− < 0,

i.e., λ is not a spectral point of positive type of B.
If µ ∈ (−∞, 0)\σ(T+), then very similar arguments as above imply that for every

sequence (gn,+ ⊕ gn,−) ⊂ dom B with the properties ‖gn,+ ⊕ gn,−‖ = 1 and limn→∞ ‖(B −
µ)(gn,+ ⊕ gn,−)‖ = 0 necessarily

lim sup
n→∞

[fn,+ ⊕ fn,−, fn,+ ⊕ fn,−] < 0

holds, i.e., µ is a spectral point of negative type of B; µ ∈ σ−−(B). Any µ ∈ (−∞, 0)∩σ(T+) is
an eigenvalue of T+ (and an embedded eigenvalue of B) and every corresponding eigenfunction
g+ ∈ dom T+ satisfies

[g+ ⊕ 0, g+ ⊕ 0] = (g+, g+)+ > 0,

so that µ is not a spectral point of negative type of B.
Summing up we have proved the following statements on the spectral properties of the

operator B. Observe that assertion (iv) follows from the fact that the negative eigenvalues of
T+ or the positive eigenvalues of −T− accumulate to zero.

Lemma 1. Let B be the selfadjoint operator in the Krein space (L2(R), [· , ·]) from (12) and
let T+ and T− be the differential operators from section 2.1 with lower bounds k+ and k−. Then
the following holds.

(i) σ(B) = σess(B) = R and ρ(B) = C\R;
(ii) (0,∞)\σ(−T−) = σ++(B) and (−k−,∞) ⊂ σ++(B);

(iii) (−∞, 0)\σ(T+) = σ−−(B) and (−∞, k+) ⊂ σ−−(B).
(iv) For every ε > 0 at least one of the following statements is true:

8
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(a) there exist an eigenvalue λ ∈ (0, ε) of B and a corresponding eigenfunction fλ with
[fλ, fλ] < 0;

(b) there exist an eigenvalue µ ∈ (−ε, 0) of B and a corresponding eigenfunction gµ

with [gµ, gµ] > 0.

Moreover, since T+ and −T− are selfadjoint operators in the Hilbert spaces L2(R+) and
L2(R−), respectively, it follows that the norm of the resolvent of the operator B can be
estimated by

‖(B − λ)−1‖ � 1

|Im λ| , λ ∈ C\R.

Therefore the operator B is definitizable over the domain C\{0} and B is not definitizable
(over C). The reason for non-definitizability in a neighborhood of zero is the property (iv) in
lemma 1.

2.3. The indefinite Sturm–Liouville operator A and the operator B

The intersection (in the sense of graphs) of the indefinite Sturm–Liouville operator A in (4)
and the operator B is given by

Sf := Af = Bf, f ∈ dom S := {y ∈ dom A ∩ dom B : Ay = By} . (14)

A function f = f+ ⊕ f− ∈ L2(R) belonging to

dom A ∩ dom B = dom A ∩ (dom T+ ⊕ dom T−)

is absolutely continuous and has an absolutely continuous derivative f ′ such that −f ′′ + Vf

belongs to L2(R) and f (0) = f+(0) = f−(0) = 0 holds. For such a function we have

Af = sgn(·)(−f ′′ + Vf ) = (−f ′′
+ + V+f+) ⊕ (f ′′

− − V−f−) = Bf,

that is, A and B coincide on the dense subspace dom A ∩ dom B of L2(R) and therefore the
operator S in (14) is a densely defined closed operator which is a one-dimensional restriction
of A and B.

With the help of the asymptotic behavior of certain Titchmarsh–Weyl functions
corresponding to the operators T+ and T− it can be shown that the resolvent set ρ(A) of A is
nonempty, see, e.g., ([3], corollary 3.4) or ([15], section 2). Now dim(A/S) = dim(B/S) = 1
implies

dim(ran((A − λ)−1 − (B − λ)−1)) = 1, λ ∈ ρ(A) ∩ ρ(B), (15)

so that A can be viewed as a one-dimensional perturbation in resolvent sense of the operator
B. Thus the essential spectra of A and B coincide, σess(A) = σess(B) = R (see (13) and
lemma 1), and the nonreal spectrum of A consists of eigenvalues. As − d2

dx2 + V is in the limit
point case at ±∞ the corresponding geometric eigenspaces are one-dimensional.

Furthermore, by ([4], theorem 2.2) the operator A is definitizable and non-definitizable
over the same domains as B, that is, A is definitizable over C\{0} and not definitizable
(over C). As a consequence of the definitizability over C\{0} we find the remaining statements
of theorem 1. Non-definitizability in a neighborhood of zero can have three different reasons,
firstly complex eigenvalues may accumulate to zero, secondly the growth of the resolvent of A

may not be of finite order, or thirdly for each ε > 0 the interval (−ε, 0) contains spectral points
of positive and negative types of A or the interval (0, ε) contains spectral points of positive and
negative types of A. Since ([5], theorem 2.4) and lemma 1 (ii) imply that (−∞, 0) and (0,∞),
with the possible exception of a discrete set, belong to σ−−(A) and σ++(A), respectively, the

9
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third option for non-definitizability of A in a neighborhood of zero holds if and only if there
exists a sequence of positive eigenvalues of A accumulating to zero with corresponding [· , ·]-
negative eigenfunctions or there exists a sequence of negative eigenvalues of A accumulating
to zero with corresponding [· , ·]-positive eigenfunctions. This completes the proof of
theorem 2.

References

[1] Azizov T Ya and Iokhvidov I S 1989 Linear Operators in Spaces with an Indefinite Metric (New York: Wiley)
[2] Azizov T Ya, Jonas P and Trunk C 2005 J. Funct. Anal. 226 114
[3] Behrndt J 2007 J. Math. Anal. Appl. 334 1439
[4] Behrndt J 2007 J. Operator Theory 58 415
[5] Behrndt J and Jonas P 2005 Integral Equations Operator Theory 52 17
[6] Behrndt J and Trunk C 2007 J. Diff. Eqns 238 491
[7] Bender C M 2007 Rep. Prog. Phys. 70 947
[8] Caliceti E, Graffi S and Sjöstrand J 2005 J. Phys. A: Math. Gen. 38 185
[9] Curgus B and Langer H 1989 J. Diff. Eqns 79 31

[10] Curgus B and Najman B 1995 Proc. Am. Math. Soc. 123 1125
[11] Dunford N and Schwartz J 1963 Linear Operators Part II. Spectral Theory. Self Adjoint Operators in Hilbert

Space (New York: Interscience)
[12] Jonas P 1988 Integral Equations Operator Theory 11 351
[13] Jonas P 2003 Theta Ser. Adv. Math. 2 95–127
[14] Karabash I and Malamud M 2007 Operators and Matrices 1 301
[15] Karabash I and Trunk C 2007 Preprint TU Ilmenau Institut for Mathematics No. 07–23
[16] Langer H 1965 Habilitation Thesis TU Dresden
[17] Langer H 1982 Functional Analysis vol 948 (Berlin: Springer) p 1
[18] Lancaster P, Markus A and Matsaev V 1995 J. Funct. Anal. 131 1
[19] Langer H, Markus A and Matsaev V 1997 Math. Ann. 308 405
[20] Langer H and Tretter C 2004 Czech. J. Phys. 54 1113
[21] Weidmann J 1987 Lecture Notes in Mathematics vol 1258 (Berlin: Springer)
[22] Weidmann J 2003 Lineare Operatoren in Hilberträumen. Teil II: Anwendungen (Leipzig: Teubner)
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